A posteriori error analysis for time-dependent Ginzburg-Landau type equations
نویسنده
چکیده
This work presents an a posteriori error analysis for the finite element approximation of time-dependent Ginzburg-Landau type equations in two and three space dimensions. The solution of an elliptic, self-adjoint eigenvalue problem as a postprocessing procedure in each time step of a finite element simulation leads to a fully computable upper bound for the error. Theoretical results for the stability of degree one vortices in Ginzburg-Landau equations and of generic interfaces in Allen-Cahn equations indicate that the error estimate only depends on the inverse of a small parameter in a low order polynomial. The actual dependence of the error estimate upon this parameter is explicitly determined by the computed eigenvalues and can therefore be monitored within an approximation scheme. The error bound allows for the introduction of local refinement indicators which may be used for adaptive mesh and time step size refinement and coarsening. Numerical experiments underline the reliability of this approach.
منابع مشابه
Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity
The time-dependent Ginzburg-Landau model which describes the phase transitions taking place in superconductors is a coupled system of nonlinear parabolic equations. It is discretized semi-implicitly in time and in space via continuous piecewise linear nite elements. A posteriori error estimates are derived for the L 1 L 2 norm by studying a dual problem of the linearization of the original syst...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملRobust A Priori and A Posteriori Error Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations Past Topological Changes
A priori and a posteriori error estimates are derived for the numerical approximation of scalar and complex valued phase field models. Particular attention is devoted to the dependence of the estimates on a small parameter. For typical singularities the estimates depend on the inverse of the parameter in a polynomial as opposed to exponential dependence of estimates resulting from a straightfor...
متن کاملFinite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity
The initial-boundary value problem for the time-dependent Ginzburg-Landau equa, tions that model the macroscopic behavior of superconductors is considered. The convergence of finite-dimensional, semidiscrete Galerkin approximations is studied as is a fully-discrete scheme. The results of some computational experiments are presented. Keywords-Superconductivity, Timedependent Ginzburg-Landau equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 99 شماره
صفحات -
تاریخ انتشار 2005